skip to main content


Search for: All records

Creators/Authors contains: "Jackman, James A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stellar variability is a limiting factor for planet detection and characterization, particularly around active M-type stars. Here we revisit one of the most active stars from the Kepler mission, the M4 star GJ 1243, and use a sample of 414 flare events from 11 months of 1-minute cadence light curves to study the empirical morphology of white-light stellar flares. We use a Gaussian process detrending technique to account for the underlying starspots. We present an improved analytic, continuous flare template that is generated by stacking the flares onto a scaled time and amplitude and uses a Markov Chain Monte Carlo analysis to fit the model. Our model is defined using classical flare events but can also be used to model complex, multipeaked flare events. We demonstrate the utility of our model using TESS data at the 10-minute, 2-minute, and 20 s cadence modes. Our new flare model code is made publicly available on GitHub.5

    https://github.com/lupitatovar/Llamaradas-Estelares

     
    more » « less
  2. Abstract We present spectroscopic measurements of the Rossiter–McLaughlin effect for WASP-148b, the only known hot Jupiter with a nearby warm-Jupiter companion, from the WIYN/NEID and Keck/HIRES instruments. This is one of the first scientific results reported from the newly commissioned NEID spectrograph, as well as the second obliquity constraint for a hot Jupiter system with a close-in companion, after WASP-47. WASP-148b is consistent with being in alignment with the sky-projected spin axis of the host star, with λ = − 8 .° 2 − 9 .° 7 + 8 .° 7 . The low obliquity observed in the WASP-148 system is consistent with the orderly-alignment configuration of most compact multi-planet systems around cool stars with obliquity constraints, including our solar system, and may point to an early history for these well-organized systems in which migration and accretion occurred in isolation, with relatively little disturbance. By contrast, previous results have indicated that high-mass and hot stars appear to more commonly host a wide range of misaligned planets: not only single hot Jupiters, but also compact systems with multiple super-Earths. We suggest that, to account for the high rate of spin–orbit misalignments in both compact multi-planet and isolated-hot-Jupiter systems orbiting high-mass and hot stars, spin–orbit misalignments may be caused by distant giant planet perturbers, which are most common around these stellar types. 
    more » « less